

Login: **±** Register

ScienceDirect			i obolic clorary				ı	Register
Home Bro	owse Search	My Settings Alerts	s Help	Live Chat				
Quick Search	Title, abstract, k	eywords		Auth	or			
🕜 search tips	Journal/b	oook title		Volun	ne	Issue	Pa	age
	ue 4, May 2007, P							
SummaryP			` ′	/iew thumb		• '	_	•
₩ Add to my G	Quick Links 💹 Ci	ted By 💟 E-mail Article	Save as	: Citation Alert	Exp	oort Citation	M Cita	ition Feed
doi:10.1016/j.seares.2006.12.002					Related Articles in ScienceDirect			
., 0	· ·	ction of the biva	alve S <i>pis</i>		of the cu	ion structure ut trough sh es Research	e	namics
subtrunca	ata (da Cos	ta) in Dutch coa	stal wate	ers		I stable isot n selected o sphere		d trace
Joana F.M.F. C Veer ^a	ardoso ^{, a,} ,	Johannes IJ. Witte ^a and	d Henk W. va	n der '	reprodu	variability in ction of the of Sea Res	P	and
^a Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg Texel, The Netherlands					▶ View More Related Articles			
•	e 2006; accepted	4 December 2006. Avai	ilable online 2	22	+ Add	to <mark>2colla</mark> :	-	
Abstract	act			•	Nequ	ıest Permi:	ssion	
Abstract			V	View Record in Scopus				
				•			-	

The bivalve Spisula subtruncata is usually abundant in shallow coastal waters@itentgEthenDutchpus (1)

coast. However, its biomass has been decreasing since 1995. In order to assess whether reproductive failure may be the cause of the observed decline over the last decades, the energy investment in reproduction of a population of *S. subtruncata* from central Dutch coastal waters was studied. The population studied consisted of individuals of up to four years old. Shell length reached maximum values of around 32 mm and individual total body, somatic and gonadal ash-free dry mass reached maximum values of about 278 mg AFDM, 252 mg AFDM and 76 mg AFDM, respectively. A clear seasonal cycle in somatic and gonadal mass was observed. Somatic and gonadal mass indices increased in early spring and reached maximum values during summer, followed by a decrease to minimum values at the beginning of the following year. Spawning was in June–July and settlement of spat seems to have occurred in July–August. Mean oocyte diameter was $57.43 \pm 0.03 \, \mu m$, corresponding to a volume of $98972 \, \mu m^3$. These results suggested that reproductive failure was not the cause of the current population decline. Most likely, unsuccessful settlement of spat and/or severe predation during the first months of life were responsible for the observed patterns.

Keywords: Growth; Reproductive investment; Age determination; Oocyte diameter; *Spisula subtruncata*; Dutch coastal waters

Article Outline

1. Introduction

- 2. Materials and methods
 - 2.1. Field sampling
 - 2.2. Data analysis
 - 2.3. Laboratory experiments
- 3. Results
 - 3.1. Internal shell lines vs. external shell marks
 - 3.2. Body mass cycles and growth
 - 3.3. Spawning and oocyte size
- 4. Discussion
 - 4.1. Age determination
 - 4.2. Body mass cycles and growth
 - 4.3. Spawning and oocyte size

Acknowledgements

References

1. Introduction

The bivalve *Spisula subtruncata* is a common species occurring in shallow coastal waters from Norway to the Mediterranean and the Canary Islands (Tebble, 1966 and Hayward and Ryland, 1995). In Dutch waters, it occurs along the entire coast (Tebble, 1966, Daan and Mulder, 2005 and Craeymeersch and Perdon, 2006). *S. subtruncata* lives in shallow soft bottoms, where it may reach densities of thousands of adults per m² and tens of thousands of spat per m² (Leopold et al., 1998). It is an important food source for shrimps and demersal fishes (Braber and De Groot, 1973, Møhlenberg and Kiørboe, 1981 and Pihl and Rosenberg, 1984) and a staple diet of diving sea ducks (Offringa, 1991, Durinck et al., 1993, Leopold et al., 1995 and Fox, 2003).

Although there is substantial information on the stock size of *S. subtruncata* during the last decade (Craeymeersch et al., 2001, Craeymeersch and Perdon, 2003, Craeymeersch and Perdon, 2004a, Craeymeersch and Perdon, 2004b and Craeymeersch and Perdon, 2006), limited information is available on its life-history. The first records on recruitment and growth of *S. subtruncata* are found in Davis, 1923 and Davis, 1925 on the Dogger Bank (North Sea). Petersen (1977) confirmed its presence in this area in the 1970s, but more recently no *S. subtruncata* were seen ont the Dogger Bank (Wieking and Kröncke, 2003 and Daan and Mulder, 2005). *S. subtruncata* was found off the German Wadden Sea coast by Hagmeier (1930) and Ziegelmeier (1978). Degraer et al. (1999) described a population of *S. subtruncata* along the Belgian coast. Although the species sometimes also occurs offshore, in general it seems to be most abundant in coastal waters (Daan and Mulder, 2005; Degraer et al., 2006). In Dutch waters, the biomass of *S. subtruncata* is now the lowest since 1995 (Craeymeersch and Perdon, 2006). The fact that densities of 1-y-old individuals have been very low for the last 5 years (Craeymeersch and Perdon, 2006) suggests that failure in successful spatfall or in subsequent recruitment may be the problem.

Rueda and Smaal (2004) observed ripe gonads in *S. subtruncata* during the summer and related the variation in body condition in the field to gametogenesis. However, the contribution of gonadal mass to the total body mass variation along the year is unknown since the evaluation of gametogenesis was done in a qualitative way by visual inspection of the gonads. Therefore, in the present paper, the energy investment in reproduction of a population of *S. subtruncata* from Dutch coastal waters is studied in a quantitative way to assess whether reproductive failure may be the cause of the observed decline in biomass over the last decades. To this end, seasonal variability in growth (in terms of shell length and somatic mass) and reproductive output (in terms of gonadal mass and oocyte size) of *S. subtruncata* were followed during a 1.5-y period. In addition, since it is still unknown whether a correct age determination of *S. subtruncata* can be done by analysing the shell surface, external shell surface growth rings were compared with internal growth lines in shell cross-sections in the same shells, as done earlier for *Spisula solida* (Gaspar et al., 1995) and *Spisula solidissima* (Jones et al., 1978).

2. Materials and methods

2.1. Field sampling

Samples were collected, if possible every month, from December 2001 to June 2003 offshore Grote Keeten (52° 52′ N, 4° 38′ E) in the Dutch coastal zone of the North Sea (Fig. 1).

Display Full Size version of this image (28K)

Fig. 1. Sampling location (black circle) of Spisula subtruncata.

Locally, water depth was around 10 m and the silt content of the sediment was about 3% (Cardoso et al., subm. ms). At each sampling occasion, about 100 individuals evenly distributed over the entire size range were collected over an area of a few $\rm km^2$, by using a Van Veen grab and a 2.9 m beam trawl with a mesh size of 1 × 1 cm. Samples were sorted out immediately and taken to the laboratory, stored in seawater at 5 °C and processed within the next 48 h.

2.2. Data analysis

Of each individual, shell length was measured to the nearest 0.01 mm with electronic callipers. Subsequently, the bivalves were opened and all flesh (body) was removed. Gonads were separated from somatic tissue under a microscope (6.4×). The ash-free dry mass (AFDM) of each part was determined as the difference in dry mass after drying for 4 d at 60 °C and ash mass after incinerating for 4 h at 560 °C. The investment in somatic and gonadal mass was determined by estimating the Somatic Mass Index (SMI) and the Gonadal Mass Index (GMI). SMI was calculated as the AFDM of the soma divided by cubic shell length and GMI was expressed as the AFDM of the gonad divided by cubic shell length. GMI was determined only for animals that had gonadal mass. The extent to which variability in condition could be accounted for by seasonal variability and by differences among age classes was examined by using ANOVA. Subsequently, the model was used to correct somatic and gonadal mass indices for seasonal and age differences. In order to obtain normality, GMI data were transformed using a squared root transformation.

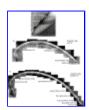
For the validation of the method of age determination, shells of 126 individuals distributed over the sampling year were selected. Two independent observers analysed both valves of each individual and aged each shell based on the external growth rings. Subsequently, left valves were placed face down in a plastic mould and embedded in epoxy resin (Poly Service, THV-500 epoxyhars and Harder 355), following Ropes (1985). Once hardened, the blocks were sectioned longitudinally through the hinge (Witbaard, 1997 and Witbaard et al., 1999). The cut surfaces were then ground flat, wet polished and examined under a microscope. The pattern of light and dark zones was then analysed by both observers, as done for *Spisula solida* by Gaspar et al. (1995), for *S. solidissima* by Jones et al. (1978), and for *S. solidissima similis* by Walker and Heffernan (1994). That is: thin dark lines, running parallel to the growing edge of the shell (growth lines), alternate with larger white zones, which were called growth increments. In seasons with low growth, lines are closer together, forming a larger and darker band (annual growth band). The distance between two annual growth bands tends to be shorter as the shell grows. For each individual, the number of external surface growth rings was compared with the number of internal growth lines from the shell's cross-section. The year of birth of each individual was determined for both methods.

Von Bertalanffy growth (VBG) curves were fitted to length-at-age data from both the internal growth lines and the surface rings, according to the expression:

$$L_t = L_{_{\infty}}^{\quad *}(1 - e^{-k^*t})$$

where L_{∞} is the estimated maximum length (mm), k is the growth rate constant (d⁻¹), t is age in days and L_t is the observed length and mass at age t. VBG parameters L_{∞} and k were iteratively estimated.

2.3. Laboratory experiments


From the seasonal cycle of gonadal mass index in 2002, the period of spawning was determined. Before the expected spawning period in 2003, 100 animals were collected once at the study site. Subsequently, they were transported to the laboratory and forced to spawn. Spawning was induced by thermal shock with added fluoxetine as described by Honkoop et al. (1999).

Freshly spawned eggs were collected separately from each female, placed on a microscope slide and digital photographs were made with a Pixera View Finder digital camera fitted to a Zeiss stereo microscope with a final resolution of 1510 pixels per mm. Subsequently, sharply focussed eggs were measured using the ImageJ™ software package (http://rsb.info.nih.gov/ij/). Egg size of at least 50 round eggs per female was measured according to Thorsen and Kjesbu (2001).

3. Results

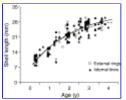
3.1. Internal shell lines vs. external shell marks

Fig. 2 shows shell sections of 2 and 3 y old individuals. Growth lines and an annual growth band are seen in detail in Fig. 2a. Until an age of 2, the number of external rings usually equalled the number of internal growth lines, that is, the two methods nearly always resulted in the same estimate of the age (Table 1). From the age of 3 onwards, the number of mistakes made by using the external reading was substantial. From the 126 individuals analysed, in 21% of the cases, age determination by using external rings was different from the age determined from internal growth lines. In most of these differences, age determined by external rings was lower than the one from internal lines (78% was lower and 22% higher).

Display Full Size version of this image (110K)

Fig. 2. Photograph of shell sections of *Spisula subtruncata* showing the narrow growth lines corresponding to the autumn/winter season and the broad growth bands corresponding to the spring/summer season. Growth bands represent the area between two growth lines. (a) Growth lines and growth band (6.6×), (b) 2-y-old individual (16 mm shell length), and (c) 3-y-old individual (21 mm shell length).

Table 1.


Numbers of individuals of *Spisula subtruncata* allotted to an age class by two methods: analysis of the external surface rings or analysis of internal growth lines

Age from internal lines

		<u> </u>	1	2	3	4
Age from external marks	0	26	0	0	0	0
	1	1	17	4	0	0
	2	0	2	22	11	0
	3	0	0	1	29	6
	4	0	0	0	2	5

Numbers in bold correspond to the number of individuals in which the two methods led to the estimation of an identical age.

VBG curves fitted for length-at-age data for the internal lines and external rings resulted in similar growth curves (Fig. 3). The estimated VBG parameter L_{∞} (asymptotic length) resulted in a maximum length of 33.5 ± 1.4 mm for the external rings and 31.1 ± 1.0 mm for the internal lines (Table 2). Nevertheless, no significant differences were found between the two curves (*F*-test, $F_{(2,248)} = 1.55$, p = 0.214). In addition, comparison of L_{∞} and k between the two methods by using the t-test did not result in significant differences (see Table 2).

Display Full Size version of this image (15K)

Fig. 3. Growth rate of *Spisula subtruncata* determined from the analysis of external surface rings $(\circ, -)$ and internal lines (\blacktriangle ---). The transition between two age groups is considered to be on the first of January.

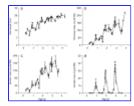
Table 2.

Parameters of the Von Bertalanffy growth curve for shell length (mm) of *Spisula subtruncata*, using the age determined by both the analysis of internal growth lines and external surface rings

	n	L_{∞} (mm)	k (y ⁻¹)	r²
Internal growth lines	126	31.12 ± 1.04	0.46 ± 0.038	0.86
External growth rings	126	33.48 ± 1.40	0.52 ± 0.039	0.86
p (of difference)		> 0.05	> 0.05	

Probability values result from a t-test.

3.2. Body mass cycles and growth


In the following analysis, sexes were treated together because no differences were found between them (ANOVA, p > 0.05). Body, somatic and gonadal mass indices showed clear seasonal trends (Fig. 4). BMI and SMI increased in early spring, showed a peak around May and minimum values around January. GMI increased

from December to May, and decreased from June onwards. Significant differences in indices were found between months but not between age groups (ANOVA, p > 0.05). Most individuals developed gonads in May. The gonadosomatic ratio, used as a measure of reproductive investment, showed that in May the total body mass of *S. subtruncata* consisted for about 20% of gonads (not shown).

Display Full Size version of this image (53K)

Fig. 4. (a, d) Body mass index (mg cm⁻³), (b, e) somatic mass index (mg cm⁻³) and (c, f) gonadal mass index (mg cm⁻³) of *Spisula subtruncata* plotted against month (a to c) and age (d to f). GMI values are square-root transformed.

Since no significant differences were found in growth curves estimated from internal lines and external rings, age was determined for all individuals sampled based on external shell rings, to allow a direct comparison of growth patterns with results from other authors. This resulted in individuals from 0 to 4 y old. The largest observed individual sizes were 32.4 mm shell length, 278.2 mg AFDM total body mass, 252.1 mg AFDM somatic mass and 76.0 mg AFDM gonadal mass. A general pattern was found of periods of growth in total body, somatic and gonadal mass alternating with periods of decrease in mean values (Fig. 5). Growth in shell length and mass occurred in spring, in general from about February to June. Weight loss occurred in winter (from around October to February) as suggested by the decrease in mean total body mass and somatic mass values. The sometimes observed decreases in mean shell length between successive sampling occasions were probably caused by sampling errors. Growth in gonadal mass occurred from February to June, after which gonadal mass decreased rapidly due to spawning. From about September to January most individuals were empty of gonads.

Display Full Size version of this image (51K)

Fig. 5. Means of (a) shell length (mm \pm SE), (b) total body mass (mg AFDM \pm SE), (c) somatic mass (mg AFDM \pm SE), and (d) gonadal mass (mg AFDM \pm SE) of *Spisula subtruncata* plotted against age (years). The transition between two age groups is considered to be on the first of January.

3.3. Spawning and oocyte size

The drop in GMI observed between June and August 2002 (Fig. 4) indicated spawning in June or July. All individuals above 12 mm shell length developed gonads during the spawning season. From a total of 100 individuals, 90 spawned, half of which were females and the other half males. Oocyte size of 45 females was measured and the mean oocyte diameter was $57.43 \pm 0.03 \, \mu m$ (mean \pm SE). No significant relationship was found between egg diameter and female shell size.

4. Discussion

4.1. Age determination

Growth marks on shells are usually related to cessation of growth during winter months, due to low food availability and low temperatures. In Dutch waters, growth of bivalves stops during winter and their soft parts usually lose weight in autumn/winter (Lammens, 1967, Pieters et al., 1979, Beukema et al., 1985, Zwarts, 1991 and Honkoop and Beukema, 1997). In Belgian waters, Degraer et al. (1999) found that growth of *Spisula subtruncata* stopped between autumn and spring. However, sudden changes in temperature or food conditions, spawning, and other stressing factors may also lead to a temporary cessation of growth. This may cause errors in age determination by examining growth bands (both externally and internally). Since the shell structure of *S. subtruncata* is similar to those of *S. solida* and *S. solidissima*, we analysed the internal growth lines as described by Jones et al. (1978) and Gaspar et al. (1995) for those two species. However, a validation of the use of internal growth marks for age determination in *S. subtruncata* is required. This can be achieved by marking experiments (Jones et al., 1978, Richardson, 1988 and Gaspar et al., 1995) or by carbon and oxygen isotope analysis (Witbaard et al., 1994) to confirm the seasonality of the bands.

The present study shows some discrepancies between external reading of shell marks and internal lines from shell sections but these hardly affect the obtained growth curves. In *S. solida* and *S. solidissima* (Jones et al., 1978 and Gaspar et al., 1995), age determined from external surface rings resulted in an overestimation of growth in comparison with internal reading. The fact that the variability in growth parameter estimates was higher when external reading was used instead of internal suggests that the use of internal lines may be a more accurate method. If so, the external reading led to a systematic underestimation of the number of growth marks, especially in individuals over 2 y old, resulting in an overestimation of growth. Nevertheless, since maximum age observed in the present study was only 4 y, differences in growth between the two methods were very small. In other years, older animals (up to 5 y old) were found in a nearby area (Leopold, 1996). Therefore, in older populations it may be important to analyse the internal shell lines to obtain a more accurate estimation of age.

4.2. Body mass cycles and growth

Seasonal variation in indices of body, somatic and gonadal mass showed increases in early spring, reaching maximum values around May, followed by a decline until the beginning of the following year. The decrease in body condition during summer seems to be a consequence of both the release of gametes and increased water temperature, leading to higher metabolic costs (Rueda and Smaal, 2004). In fact, a small increase in somatic mass index (SMI) was seen in October, at the end of the spawning season, suggesting that the drop in SMI during the summer months is partly due to spawning. The variation of total individual mass (soma plus gonad) on the Belgian coast followed the same trend with maximum values between April and July and minimal ones in January–February (Degraer et al., 1999). Body mass index (BMI) values found in the present study are in the same order of magnitude as the results of Bodoy (1980) off the Mediterranean coast, although the seasonal trend is different since peak values there occur in March.

Over the distribution range of *S. subtruncata*, populations are characterised by large seasonal and interannual fluctuations in density and biomass values. Along European coasts, values of thousands of individuals per m² and high biomasses, observed during the summer of some years, may decline to less than 100 ind m⁻² and to a few mg AFDM m⁻² in winter (Cattaneo and Massé, 1983, Ambrogi and Ambrogi, 1985, Ambrogi and Ambrogi, 1987, Fraschetti et al., 1997 and Degraer, 1999), leading in some cases to the almost complete disappearance of the population. Along the Dutch coast, large year-to-year variability in densities and biomasses is also observed (Craeymeersch et al., 2001, Craeymeersch and Perdon, 2004a, Craeymeersch and Perdon, 2004b and Craeymeersch and Perdon, 2006). As a consequence, the role of *S. subtruncata* in structuring the macrobenthic community will vary due to the large spatial and temporal differences in abundance and biomass (Bodoy, 1980, Cattaneo and Massé, 1983, Ambrogi and Ambrogi, 1985, Ambrogi and Ambrogi, 1987, Fraschetti et al., 1997 and Degraer, 1999).

There appears to be a positive trend of both age and shell size with latitude, which might be a reflection of

differences in environmental conditions between areas. In the Mediterranean, *S. subtruncata* was found to reach a maximum size of 14 mm (at the age of 1 y) in the Golf of Marseille (Bodoy, 1980), and in the Ligurian and Adriatic Seas, maximum length observed was around 13 mm. Life-span did not exceed 1 and 2–3 y, respectively (Ambrogi and Ambrogi, 1985 and Fraschetti et al., 1997). During the present study, *S. subtruncata* reached a maximum age of 4 y, corresponding to a length of about 32 mm. However, larger maximum sizes have been reported for the same area (Leopold, 1996), in which the largest individual found was 37.5 mm long (Leopold, pers. comm., 2006).

4.3. Spawning and oocyte size

The drop in GMI shown in Fig. 4 suggests that spawning of S. subtruncata in Dutch coastal waters occurs in June or July at a water temperature of about 15-17 °C (Cardoso et al., subm. ms). From macroscopic observations of the gonad, Rueda and Smaal (2004) observed active gonads from April to June, which is in accordance with our observations. During the period of maximum gonadal mass (in May), all individuals above 12 mm shell length (corresponding to the end of the first year of life) developed gonads, suggesting that sexual maturity is a function of size and not of age. Mean oocyte diameter of spawned females was around 57 μm, corresponding to a volume of 98972 µm³. As far as known, there are no previous records of oocyte diameter in S. subtruncata so a comparison with other areas is not possible. Neither is information available on larval-stage duration and timing of settlement. However, the relationship between egg/larval volume and egg/larval development time in bivalves proposed by Cardoso et al., (2006) suggests that for an egg volume of 98972 µm³, at a mean temperature of 16 °C, egg development time (from fertilization to hatching) is around 3 days. Since the egg volume of S. subtruncata and S. solidissima is similar (Loosanoff and Davies, 1963), also a similar larval volume at hatching can be assumed. At a temperature of 16 °C and larval volume of 321,392 µm3 (Loosanoff and Davies, 1963), larval development time is about 24 days. This suggests that it takes about one month after spawning for larvae to settle on the seafloor and that settlement in the studied S. subtruncata population occurred around July-August. The fact that 0-y-old individuals were present in the samples from September onwards corroborates these results.

The fact that almost all mature individuals (males and females) developed gonads during the spawning season and the release of gametes did not seem to be a problem (as observed in the experimental set-up) suggests that the current population decline is not caused by reproductive failure. Since commercial fishing on *S. subtruncata* is now regulated (Craeymeersch and Perdon, 2006) and bird predation on adults has not increased over the years (Leopold, pers. comm., 2006) it is most likely that unsuccessful settlement of spat and/or severe predation during the first months of life is responsible for the observed patterns.

A more extensive study, in terms of temporal and spatial differences in growth and reproduction between populations, as well as a larger sampling effort, will be required to fully appreciate the large year-to-year variability in population dynamics and growth of *S. subtruncata*. Nevertheless, although our results are limited to a small area of the Dutch coast, the present study allows insight into the reproductive investment of *S. subtruncata* as a first approach to understanding the cause of the near disappearance of this species along the Dutch coast.

Acknowledgements

Thanks are due to the crew of RV 'Navicula' for assistance during sampling and to Jan Beukema, Johan Craeymeersch, Wim Wolff, Mardik Leopold and two anonymous referees for providing critical comments on earlier drafts of the paper. This research was supported by the project 'Praxis XXI' MCT - Portugal, grant BD/21799/99.

References

Ambrogi and Ambrogi, 1985 R. Ambrogi and A.O. Ambrogi, The estimation of secondary production of the marine bivalve *Spisula subtruncata* (Da Costa) in the area of the Po river delta, *Mar. Ecol. P.S.Z.N.I.* **6** (1985), pp. 239–250. View Record in Scopus | Cited By in Scopus (5)

Ambrogi and Ambrogi, 1987 R. Ambrogi and A.O. Ambrogi, Temporal variations of secondary production in the marine bivalve *Spisula subtruncata* off the Po river delta (Italy), *Estuar. Coast. Shelf Sci.* **25** (1987), pp. 369–379. Abstract | PDF (1333 K) | View Record in Scopus | Cited By in Scopus (6)

Beukema et al., 1985 J.J. Beukema, E. Knol and G.C. Cadée, Effects of temperature on the length of the annual growing season in the tellinid bivalve *Macoma balthica* (L.) living on tidal flats in the Dutch Wadden Sea, *J. Exp. Mar. Biol. Ecol.* **90** (1985), pp. 129–144. Abstract | **Abstract + References** | PDF (1244 K)

Bodoy, 1980 A. Bodoy, Croissance et variations de la composition biochimique du bivalve *Spisula subtruncata* (Da Costa) dans le golfe de Marseille, *Thethys* **9** (1980), pp. 345–354.

Braber and De Groot, 1973 L. Braber and S.J. De Groot, The food of five flatfish species (Pleuronectiformes) in the southern North Sea, *Neth. J. Sea Res.* **6** (1973), pp. 163–172. Abstract | **Abstract + References** | PDF (406 K)

Cardoso et al., 2006 J.F.M.F. Cardoso, J.IJ. Witte and H.W. Van der Veer, Intra- and interspecies comparison of energy flow in bivalve species in Dutch coastal waters by means of the Dynamic Energy Budget (DEB) theory, *J. Sea Res.* **56** (2006), pp. 182–197. SummaryPlus | **Full Text + Links** | PDF (882 K) | View Record in Scopus | Cited By in Scopus (4)

Cattaneo and Massé, 1983 M. Cattaneo and H. Massé, Importance du recrutement de *Spisula subtruncata* (da Costa) sur la structure et les fluctuations d'un peuplement benthique, *Oceanol. Acta Proc. 17th Europ. Mar. Biol. Symp., Brest, France* (1983), pp. 63–67.

Craeymeersch and Perdon, 2003 J.A. Craeymeersch and J. Perdon, De halfgeknotte strandschelp, *Spisula subtruncata*, in de Nederlandse kustwateren in 2002, *RIVO-Rapport C004/03* (2003).

Craeymeersch and Perdon, 2004a J.A. Craeymeersch and J. Perdon, De halfgeknotte strandschelp, *Spisula subtruncata*, in de Nederlandse kustwateren in 2003, *RIVO-Rapport C040/04* (2004).

Craeymeersch and Perdon, 2004b J.A. Craeymeersch and J. Perdon, De halfgeknotte strandschelp, *Spisula subtruncata*, in de Nederlandse kustwateren in 2004 met een bijlage over de ontwikkeling van het bestand aan mesheften (*Ensis* sp.), *RIVO-Rapport C073/04* (2004).

Craeymeersch and Perdon, 2006 J.A. Craeymeersch and J. Perdon, De halfgeknotte strandschelp, *Spisula subtruncata*, in de Nederlandse kustwateren in 2005, *Wageningen IMARES-Rapport C036/06* (2006).

Craeymeersch et al., 2001 J.A. Craeymeersch, M.F. Leopold and M.O. Van Wijk, Halfgeknotte strandschelp en amerikaanse zwaardschede: een overzicht van bestaande kennis over visserij, economische betekenis, regelgeving, ecologie van de beviste soorten en effecten op het ecosysteem, *RIVO-Rapport C033/01* (2001).

Daan and Mulder, 2005 R. Daan and M.A.A.J. Mulder, The macrobenthic fauna in the Dutch sector of the North Sea in 2004 and a comparison with previous data, *NIOZ-Rapport* 2005-3 (2005).

Davis, 1923 F.M. Davis, Quantitative studies on the fauna of the sea bottom. N° 1- Preliminary investigation of fauna of the Dogger Bank, *Fish. Invest., Ser. II* **6** (1923), pp. 1–54.

Davis, 1925 F.M. Davis, Quantitative studies on the fauna of the sea bottom. N° 2- Results of the investigations in the southern North Sea, *Fish. Invest., Ser. II* **8** (1925), pp. 1–50.

Degraer, 1999 Degraer, S., 1999. Macrobenthos of shallow marine habitats (Belgian coast) and its use in coastal zone management. Ph.D. Thesis, University of Gent, Belgium.

Degraer et al., 2006 S. Degraer, J. Wittoeck, W. Appeltans, K. Cooreman, T. Deprez, H. Hillewaert, K. Hostens, J. Mees, E. Vanden Berghe and M. Vincx, De macrobenthosatlas van het Belgisch deel van de Noordzee, *Federaal Wetenschapsbeleid, Brussel, Belgium* (2006) 164 pp.

Durinck et al., 1993 J. Durinck, K.D. Christensen, H. Skov and F. Danielsen, Diet of the common scoter *Melanitta nigra* and velvet scoter *Melanitta fusca* wintering in the North Sea, *Ornis Fenn.* **70** (1993), pp. 215–218. View Record in Scopus | Cited By in Scopus (8)

Fox, 2003 A.D. Fox, Diet and habitat use of scoters *Melanitta* in the Western Palearctic— a brief overview, *Wildfowl* **54** (2003), pp. 163–182. View Record in Scopus | Cited By in Scopus (3)

Fraschetti et al., 1997 S. Fraschetti, A. Covazzi, M. Chiantore and G. Albertelli, Life-history traits of the bivalve *Spisula subtruncata* (da Costa) in the Ligurian Sea (North-Western Mediterranean): the contribution of newly settled juveniles, *Sci. Mar.* **6** (1997) (suppl. 2), pp. 25–32. View Record in Scopus | Cited By in Scopus (6)

Gaspar et al., 1995 M.B. Gaspar, M. Castro and C.C. Monteiro, Age and growth rate of the clam, *Spisula solida* L., from a site off Vilamoura, south Portugal, determined from acetate replicas of shell sections, *Sci. Mar.* **59** (1995), pp. 87–93.

Hagmeier, 1930 A. Hagmeier, Eine fluktuation von *Mactra* (*Spisula*) *subtruncata* da Costa an der ostfriesischen kuste, *Ber. Dt. Wiss. Komm. Meeresfors.* **5** (1930), pp. 126–155.

Hayward and Ryland, 1995 P.J. Hayward and J.S. Ryland, Handbook of the marine fauna of north-west Europe, Oxford University Press Inc., New York (1995).

Honkoop and Beukema, 1997 P.J.C. Honkoop and J.J. Beukema, Loss of body mass in winter in three intertidal bivalve species: An experimental and observational study of the interacting effects between water temperature, feeding time and feeding behaviour, *J. Exp. Mar. Biol. Ecol.* **212** (1997), pp. 277–297. Abstract | PDF (951 K) | View Record in Scopus | Cited By in Scopus (34)

Honkoop et al., 1999 P.J.C. Honkoop, P.C. Luttikhuizen and T. Piersma, Experimentally extending the spawning season of a marine bivalve using temperature change and fluoxetine as synergistic triggers, *Mar. Ecol., Prog. Ser.* **180** (1999), pp. 297–300. **Full Text** via CrossRef | View Record in Scopus | Cited By in Scopus (16)

Jones et al., 1978 D.S. Jones, I. Thompson and W. Ambrose, Age and growth rate determinations for the Atlantic surf clam *Spisula solidissima* (Bivalvia: Mactracea), based on internal growth lines in shell cross-sections, *Mar. Biol.* **47** (1978), pp. 63–70. **Full Text** via CrossRef | View Record in Scopus | Cited By in Scopus (31)

Lammens, 1967 J.J. Lammens, Growth and reproduction in a tidal flat population of *Macoma balthica* (L.), *Neth. J. Sea Res.* **3** (1967), pp. 315–382.

Leopold, 1996 M.F. Leopold, *Spisula subtruncata* als voedselbron voor zee-eenden in Nederland, *BEON-Rapport Nr.* 96-2 (1996).

Leopold et al., 1995 M.F. Leopold, H.J.M. Baptist, P.A. Wolf and H. Offringa, De Zwarte zeeëend *Melanitta nigra* in Nederland, *Limosa* **68** (1995), pp. 49–64. View Record in Scopus | Cited By in Scopus (7)

Leopold et al., 1998 M.F. Leopold, M.A. Van der Land and H.C. Welleman, *Spisula* en zee-eenden in de strenge winter van 1995/96 in Nederland, *BEON-Rapport Nr. 98-6* (1998).

Loosanoff and Davis, 1963 V.L. Loosanoff and H.C. Davis, Rearing of bivalve mollusks. In: F.S. Russell, Editor, *Advances in Marine Biology*, Academic Press, London (1963), pp. 1–136.

Møhlenberg and Kiørboe, 1981 F. Møhlenberg and T. Kiørboe, Growth and energetics in *Spisula subtruncata* (Da Costa) and the effect of suspended bottom material, *Ophelia* **20** (1981), pp. 79–90.

Offringa, 1991 H. Offringa, Verspreiding en voedselconsumptie van de zwarte zeeëend (*Melanitta nigra*) voor de Nederlandse kust, *NIOZ-Rapport 1991-13* (1991).

Petersen, 1977 G.H. Petersen, The density, biomass and origin of the bivalves of the Central North Sea, *Meddr Danm. Fisk.-og Havunders.* **7** (1977), pp. 221–273.

Pieters et al., 1979 H. Pieters, J.H. Kluytmans, W. Zurburg and D.I. Zandee, The influence of seasonal changes on energy metabolism in *Mytilus edulis* (L.). 1. Growth rate and biochemical composition in relation to environmental parameters and spawning. In: E. Naylor and R.G. Hartnoll, Editors, *Cyclic Phenomena in Marine Plants and Animals*, *Proc. 13th Europ. Mar. Biol. Symp.*, Pergamon Press, Oxford (1979), pp. 285–292.

Pihl and Rosenberg, 1984 L. Pihl and R. Rosenberg, Food selection and comsumption of the shrimp *Crangon crangon* in some shallow marine areas in western Sweden, *Mar. Ecol., Prog. Ser.* **15** (1984), pp. 159–168. **Full Text** via CrossRef

Richardson, 1988 C.A. Richardson, Tidally produced growth bands in the subtidal bivalve *Spisula subtruncata* (Da Costa), *J. Molluscan Stud.* **54** (1988), pp. 71–82.

Ropes, 1985 J.W. Ropes, Modern methods to age oceanic bivalves, Nautilus 99 (1985), pp. 53-57.

Rueda and Smaal, 2004 J.L. Rueda and A.C. Smaal, Variation of the physiological energetics of the bivalve *Spisula subtruncata* (da Costa, 1778) within an annual cycle, *J. Exp. Mar. Biol. Ecol.* **301** (2004), pp. 141–157. SummaryPlus | **Full Text + Links** | PDF (347 K) | View Record in Scopus | Cited By in Scopus (5)

Tebble, 1966 N. Tebble, British Bivalve Seashells: A Handbook Identification, British Museum (Natural History), Londen (1966).

Thorsen and Kjesbu, 2001 A. Thorsen and O.S. Kjesbu, A rapid method for estimation of oocyte size and potential fecundity in Atlantic cod using a computer-aided particle analysis system, *J. Sea Res.* **46** (2001), pp. 295–308. SummaryPlus | **Full Text + Links** | PDF (1418 K) | View Record in Scopus | Cited By in Scopus (19)

Walker and Heffernan, 1994 R.L. Walker and P.B. Heffernan, Age, growth rate, and size of the southern surfclam, *Spisula solidissima similis* (Say, 1822), *J. Shellfish Res.* **13** (1994), pp. 433–441. View Record in Scopus | Cited By in Scopus (17)

Wieking and Kröncke, 2003 G. Wieking and I. Kröncke, Macrofauna communities of the Dogger Bank (central North Sea) in the late 1990s: spatial distribution, species composition and trophic structure, *Helgol. Mar. Res.* **57** (2003), pp. 34–46. View Record in Scopus | Cited By in Scopus (17)

Witbaard, 1997 R. Witbaard, Tree of the sea: the use of internal growth lines in the shell of *Artica islandica* (Bivalvia, Mollusca) for the retrospective assessment of marine environmental change, Rijksuniversiteit Groningen, Groningen (1997).

Witbaard et al., 1994 R. Witbaard, M.I. Jenness, K. van der Borg and G. Ganssen, Verification of annual growth increments in *Artica islandica* L. From the North Sea by means of oxygen and carbon isotopes, *Neth. J. Sea Res.* **33** (1994), pp. 91–101. Abstract | **Abstract + References** | PDF (1001 K) | View Record in Scopus | Cited By in Scopus (27)

Witbaard et al., 1999 R. Witbaard, G.C.A. Duineveld and P.A.W.J. Wilde, Geographical differences in growth rates of *Artica islandica* (Mollusca: Bivalvia) from the North Sea and adjacent waters, *J. Mar. Biol. Assoc. U.K.* **79** (1999), pp. 907–915. **Full Text** via CrossRef | View Record in Scopus | Cited By in Scopus (20)

Ziegelmeier, 1978 E. Ziegelmeier, Macrobenthos investigations in the eastern part of the German Bight from 1950 to 1974, *Rapp. P.-V. Reun. - Cons. Int. Explor. Mer* **172** (1978), pp. 432–444.

Zwarts, 1991 L. Zwarts, Seasonal variation in body weight of the bivalves *Macoma balthica*, *Scrobicularia plana*, *Mya arenaria* and *Cerastoderma edule* in the Dutch Wadden Sea, *Neth. J. Sea Res.* **28** (1991), pp. 231–245.

Abstract | **Abstract + References** | PDF (1192 K) | View Record in Scopus | Cited By in Scopus (66)

Corresponding author.

Journal of Sea Research

Volume 57, Issue 4, May 2007, Pages 316-324

Home Browse Search My Settings Alerts Help Live Chat

About ScienceDirect | Contact Us | Terms & Conditions | Privacy Policy

Copyright © 2008 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.