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Abstract

Suspended Particulate Matter (SPM) is an important environmental parameter in coastal seas such as the North Sea as it
influences underwater light conditions. Our description and understanding of the complex dynamical SPM transport system
can be much improved by means of an integration of remote sensing data and numerical modeling. In this paper, the data
assimilation technique, Ensemble Kalman Filter (EnKF), is used to assimilate the remote sensing data of Suspended
particulate matter (SPM) from the MEdium Resolution Imaging Spectrometer instrument (MERIS) sensor on ESA’s
ENVISAT in the computational water quality and sediment transport model, Delft3D-WAQ. The objectives are to determine
SPM concentrations and calculate the flux of marine silt along the Dutch coast. SPM data products retrieved from MERIS
RR ocean color, when they include information on the uncertainty in the data, are very suitable to be used to update the
Delft3D-WAQ sediment transport model in an Ensemble Kalman Filtering approach. For this aim, an optimal set of
parameters consisting of SPM concentrations, error products and an approximation of optical depth was derived from MERIS
data using the HYDROPT algorithm. This algorithm comprises a forward model based on inherent optical properties (IOPs)
and radiative transfer modeling with Hydrolight, and an inverse model to estimate SPM from MERIS reflectance. These
parameters were checked for: (1) accuracy of near-shore bio-optical retrieval and atmospheric correction algorithms, (2)
possibility to capture change between observations under conditions of non-uniform spatio-temporal coverage, (3) optical
depth versus depth of model layers and depth of stratification. The robustness of both data and model are prerequisites for a
successful Kalman Filtering. Eventually, the assimilation of the mostly daily MERIS observations enables to overcome the
limitations of cloud cover and restriction to the sea surface layer inherent to space borne ocean color observations.

1. Introduction

Fine-grained suspended particulate matter (SPM) is composed of small particles of both organic and inorganic
origin. SPM plays an important role in the ecology of shelf seas, for instance in the southern North Sea and
adjacent Wadden Sea and estuaries. SPM influences the underwater light climate, which is an important
environmental condition for plankton growth. The organic content of fine sediments is also an important food
source at the basis of the food web. Finally, the transport and fate of SPM influences the fate of attached micro-
pollutants and trace metals.

Figure 1 shows an instantaneous view of the color of the surface waters of the southern North Sea. This coastal
transport system is characterized by highly variable concentrations in time and space: resuspension events during
high wave conditions, formation of eddies and meanders, variable river inflow all contribute to the complexity.
An illustration of the high temporal variability is obtained from high-resolution in situ measurements by means
of Optical Backscattering Sensors (OBS) mounted on a Smartbuoy deployed by Cefas (Lowestof, UK) and the
Dutch Rijkswaterstaat (RWS) in 2001 (see Figure 2).
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Figure 1 MODIS (Terra) recording of the Figure 2. Time series of SPM surface concentration observed by the OBS on the Cefas-
southern North Sea, March 26, 2007, Rijkswaterstaat Smartbuoy mooring 10 kilometers off Noordwijk. Dashed red line denotes
illustrating spatial distribution of temporal mean.

suspended matter in the surface water.
(Image courtesy MODIS Rapid Response
Project NASA/GSFC

Analysis of these data has shown that, in the Dutch coastal zone, autocorrelation time scales are of the order of 7
days. Spatial correlation scales are estimated to be several tens of kilometers along-coast.

Both in situ and remote sensing techniques will have their limitations when sampling such a heterogeneous
system. In situ samples are mostly sparse in space and time, optical remote sensing will only measure a certain
surface layer whereas a large portion of the SPM is found near the bed. To overcome the practical limitations to
either source of information, we assimilate remotely sensed SPM concentrations in a numerical transport model
by means of Ensemble Kalman Filtering (EnKF) (Evensen, 2003).

Traditionally, monitoring has been based on regular ship cruises, occasionally extended with dedicated field
campaigns. Consequently, our observation-based description of the coastal SPM transport system has often been
limited to spatial and temporal scales of tens of kilometers and weeks, respectively, missing smaller scale spatial
features or temporal events. However, with the arrival of reliable ocean color remote sensing data (e.g., from
SeaWiFs, and more recently, NASA’s MODIS sensors and ESA’s MERIS sensor) higher frequency, synoptic
mapping of seas surface SPM has become feasible with increasing spatial resolution. Also, automated in situ
monitoring buoys enable the recording of continuous time series of SPM at specific sites for prolonged periods
of time. These developments enable a new level of describing and understanding the physical and biological
dynamics in coastal seas including SPM transport (see e.g. Robinson et al., 2002). Part of this development is the
extended use of numerical transport models, as combining all these observational data resources enables the
operational use of numerical models for various water quality applications. In recent years, integrated
observation-modeling efforts have been and are undertaken to further describe and understand the North Sea
SPM transport system exploiting the new sources of information available (e.g., Gerritsen et al. 2000, Eleveld et
al., 2004, Gayer et al, 2006, De Boer et al, 2007, Allen et al, 2007, Fettweiss et al, 2007).

The integrated approach aims to overcome the challenges met in both remote sensing and modeling when carried
out separately. Derivation of accurate SPM values for this highly dynamic coastal sea where large-scale
circulation, tidal currents and riverine fresh water inputs occur is notoriously difficult. SPM retrieval from ocean
color remote sensing is dependent on good atmospheric correction, and characterisation of the high variability in
Inherent Optical Properties (IOPs) in Case 2 waters. Modeling suffers from propagation of uncertainties in
hydrodynamic forcing and SPM behavior, in addition to uncertainties in the parameterization of water-bed
exchange of sand-mud mixtures.

In this paper we describe the combination of remotely sensed SPM and derived remote sensing products and an
SPM transport model of the southern North Sea to support assessment of SPM conditions in the Dutch coastal
zone. To this end, a generic data assimilation technique is applied, the Ensemble Kalman Filter (EnKF) as
introduced by Evensen (1994) and described in Evensen (2003) is used to reduce the model errors and to
significantly improve the accuracy of the predictions and operational forecasts.
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This paper is part of a study that aims to increase our level of description and understanding of the coastal SPM
transport with an application to support policy and decision making related to human interventions in the coastal
system (such as infrastructure works, dredging and dumping etc.). Eventually, we wish to improve our means of
detecting trends in SPM conditions and help distinguishing between natural and anthropogenic changes in the
SPM (and eventually also in the ecosystem) in coastal waters. The objectives are to calculate fluxes of SPM and
to obtain information in space and time including the vertical distribution of SPM over the entire Dutch coastal
zone that are not available from measurements alone.

Particular challenges in remotely sensed nearshore SPM observations are encountered. The most prominent
challenges are:

1) The large number of scatterers (high sediment load) near the coast causes reduction of optical depth,
possibly saturation of the signal and might impede the atmospheric correction (Ruddick et al., 2000);

2) The number of observations per pixel vary due to cloudiness and MERIS Level 2 quality flag settings.
In the mean time major changes in SPM concentrations between observations can occur (Fettweis et al.,
2007), particularly by resuspension during windy conditions (Eleveld et al., 2004);

3) Remote sensing (RS) allows estimation of SPM over a top layer of the North Sea (optical depth), in a
region where salinity stratification (De Boer et al., 2006) occurs, whereas the model solves the mass
balance over the full water column in 10 layers varying with water depth and incorporates exchange
with bed. Information on optical depth needs to be incorporated in the DA to eliminate or decrease any
possible mismatch between observed SPM concentrations (and derived mass), and predicted mass for
the corresponding depth layer.

This paper first presents the results of analysis of the MERIS SPM products retrieved by mean of the HYDROPT
algorithm. Also, the opportunities that they offer for data assimilation are indicated. Secondly the model system
will be described and results are discussed. Thirdly the approach towards and results of assimilating the model
with the remotely sensed SPM products is presented. Finally a comparison against in situ data is presented.

2. Approach

The approach to make optimal use of remote sensing data, model applications and in situ data is outlined below
in Figure 3. In the present study, the year 2003 serves as a test case. For this entire year, MERIS Reduced
Resolution water leaving radiance data have been processed by VU-1VM, using the HYDROPT algorithm
(Pasterkamp and Van der Woerd, 2007). As discussed also by Eleveld et al. (2007), these data have been
extensively quality checked and various error products (in the scheme collectively indicated by cspy) and the
extinction coefficients (Kdsep) have been determined and analyzed. These additional data products provide
indispensable information for the data assimilation (see also El Serafy et al., 2007). The SPM and related data
are used to continuously update the SPM transport model solution, hereby exploiting the now known
uncertainties in the remotely sensed SPM data together with model uncertainties assessed from ensemble run
experiments. Eventually, the assimilated model result of SPM concentrations (covering the entire year and
extension over the vertical) and associated extinction coefficient will be compared against in situ field data from
various sources to assess whether a closer description of the system is obtained. Finally, SPM transport fluxes
may be determined from the model as well.
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Figure 3. Scheme of the data-model integration applied to obtain improved accuracy data sets of SPM concentrations and associated fluxes
and extinction coefficients.

3 Remote Sensing
3.1 Dataset for the data assimilation

The MEdium Resolution Imaging Spectrometer instrument (MERIS) is an imaging spectrometer on board ESA’s
ENVISAT spacecraft. SPM in the North Sea was studied with MERIS RR MEGS 7.4 / IPF 5.03 atmospherically
corrected (Level 2) data (ESA, 2007). All MERIS RR and selected MERIS FR data covering the North Sea for
2003 were acquired and all water pixels that pass the PCD1_13 confidence checking were processed using
HYDROPT (Van der Woerd and Pasterkamp, 2007).

HYDROPT comprises of a forward model that generates water-leaving radiance reflectance (py) as a function of,
a.0., the Inherent Optical Properties (IOPs) absorption (a) and scattering (b) of North Sea water and its
constituents chlorophyll (CHL), SPM and colored dissolved organic matter (CDOM) It is based on radiative
transfer modelling with Hydrolight (Mobley & Sundman, 2001a and b) REVAMP IOPs (Tilstone et al.,
submitted) weighted (by optimisation) with the annual mean of independently collected (MWTL) in situ
concentration measurements for the Dutch coast (Rijkswaterstaat, 2007).

The inverse model estimates the concentrations of, a.0., SPM from MERIS water-leaving radiance reflectance py
data at 7 optical wavelength intervals based on the Levenberg-Marquard optimization. The inversion comprises
of ,/ fitting the modelled to the measured water-leaving radiance reflectance, and also renders standard errors (o)
with the retrieved CHL, SPM and CDOM concentrations. In addition, probability was derived from the
(cumulative) distribution function for the »* distribution, and ESA’s Level 2 Product Confidence Data (PCD)
flags (ESA, 2007) were passed on (Van der Woerd and Pasterkamp, 2007).

Additional to modeled reflectance, complementary vertical diffuse attenuation coefficient (Kp) values were
generated, and Kp at 560 nm, which inverse can serve as an approximation of optical depth.

3.2 Nearshore coastal quality checks

To support the DA process, quality checks were performed on selected near-coastal subsets from the Level 2 and
its accompanying (HYDROPT-processed) Level 3 dataset.

(1) Results of the ocean colour algorithm were validated by plotting SPM,s and SPM;s against time (t) for all 19
coastal stations which range in distance from the coast from 2 to 235 km. Additionally, atmospheric parameters
and HYDROPT SPM and error products were studied along a transect.

(2) Rectified maps were subtracted to characterise spatio-temporal (ST) change between observations.

(3) A first approximation of optical depth ¢= 1/Kpsgo Was calculated.
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3.3 HYDROPT SPM Products from MERIS

The following data were generated with remote sensing for the Ensemble Kalman Filtering toolbox:
e Metadata: extracted from filename, and additional Level 2 tot Level 3 processing lineage,

e primary products: lat, lon, SPM,

e error products: y% , P (cdf ), ospm, Level-2 flags

e Kpseo
Examples and nearshore characteristics of the data set are presented in the following sections.

(1) The influence of the large number of scatterers (high sediment load) near the coast on the atmospheric
correction and ocean colour algorithm seems to have less impact than anticipated. In our experience SPM from
remote sensing compares well with in situ SPM measurements (see e.g., Fig. 4). Underlying parameters versus
distance to the coastline are shown in Figs 5 — 7. Atmospheric properties remain stable along the transect until 1
km from the first land-pixel (Fig. 5). Reflectance in the near-infrared (from about 780-1400 nm) is low over
water because of high water absorption at these wavelength. Reflectance at 560 nm — which is very susceptible
to SPM scattering and low to CHL and CDOM absorption (Eleveld et al., 2006) — is high in turbid regions (Fig.
4). Hydropt gives realistic SPM results offshore and nearshore, and the errors remain very reasonable nearshore

(Fig. 8).
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Figure 4 Comparison. The algorithm validates well for nearshore (2 km) and offshore (235 km) stations. Presented are results for station G6,
which is located 6 km offshore near the dredging location for the extension of Rotterdam Harbour.
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Figure 7 HYDROPT seems to perform robustly in the nearshore zone. Values for X? are not increasing much going landward. Minor
changes in atmospheric parameters seem to be mitigated by the algorithm. Standard error o is relatively low for high nearshore SPM
concentrations. In some situations the algorithm produces 0-values.

(2) Figure 8 shows that important information about ST SPM change within a day can be derived despite
exclusion of pixels due to local cloud cover and raised Product Confidence Flags (PCD1-13). Batch processing
(Eleveld et al., 2003) allows fast processing of all data, making RS an important source of information,
particularly because MERIS covers the area of interest once or twice a day.
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Figure 8 Remote sensing registers change between observations. (See Fig. 9 for legend April data.)

(3) Using HYDROPT to its full potential, concentrations of SPM and other optical substances (CHL, CDOM)
have been retrieved from water-leaving radiance reflectance (py) of a top layer of the North Sea (optical depth).
Independently of retrieved concentrations, Kp can also be derived in parallel with water-leaving radiance
reflectance (py). Optical depth can be approximated by 1/Kpsgo. Comparing independent panels in Fig. 8 shows
that optical depth is low < 1m near shore, where many optically active substances reside, and higher 3-5 m near
the turbidity minimum offshore. Providing optical depth for the DA enables best possible updating of model
solution for this top layer.
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Figure 9 Water quality parameters and error products. Nearshore optical depth (approximated by 1/Kpsgo) is limited.

4. The SPM Transport Model Description

The numerical model suite applied comprises the Delft3D Flow hydrodynamic model (Lesser et al, 2004), the
surface wave model SWAN (Booij et al., 1999) and the sediment transport and water quality model Delft3D-
WAQ (e.g., Van Gils et al. 1993, Los et al, 2006). These models are applied on a domain covering the southern
North Sea (see Figure 10). The horizontal grid spans 65 columns x 134 rows. horizontal resolution is highest in
the coastal areas of interest, notably the Dutch coastal zone (up to ~ 2x2 km). The grid is coarser in the outer
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parts of the area included in the model (down to ~ 20x20 km). In the vertical 10 s-layers are applied. Near the
bed and near the surface, the layer thickness is about 4 percent of the local water depth to enable good resolution
of the surface mixing layer and the elevated near-bed SPM concentrations. At mid-depth, the layer thickness is
approximately 20 percent of the local water depth.

x10°  Bathymetry Southern North Sea model, depth [m] Figure 10. Horizontal grid of the Southern North Sea
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The water motion is governed by tidal, wind and density effects. Astronomic tides have been prescribed at the
open boundaries. Atmospheric forcing has been derived from hindcasts of an limited area atmospheric model
(HIRLAM, KNMI, see also http://hirlam.org). In addition, point sources where rivers discharge fresh water have
been prescribed.

Resuspension due to surface waves, especially during strong wind events, is a key factor determining the SPM
concentrations in the coastal seas. In order to obtain a model that describes the patterns of resuspension as
accurate as possible given its resolution, appropriate wave height and period data are required as input. In order
to achieve the desired accuracy, a data-model integration technique has been applied in which wave buoy
observations are combined with the SWAN wave model results. The temporal evolution of the relevant wave
parameters has been obtained from 6 wave buoys in the southern North Sea and the spatial interpolation is
carried out with the aid of the spatial patterns in wave parameters derived from a SWAN wave model simulation
for 2003. Figure 11 illustrates the spatial distance weight function and the annual mean significant wave height
from SWAN.
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Figure 11 left: Spatial distance function related to the 6 wave buoy locations (local maxima);right annual mean significant wave height (m)
for 2003 as determined by the wave model SWAN.

The sediment transport model Delft3D-WAQ computes the dispersion of suspended matter in two different silt
fractions given the transport velocities, mixing coefficients and bed shear stresses adopted from the
hydrodynamic and wave models. Recently, Delft3D-WAQ has been extended with an improved
parameterization of the resuspension and buffering of silt fractions from and in a predominantly sandy seabed
(Van Kessel et al., 2007). This parameterization enables a realistic description of the periodic and relatively
limited resuspension during the tidal cycle and the massive resuspension from deeper bed layers observed during
high wave events.

The transport model is provided with lateral boundary conditions based on climatological SPM concentrations,
SPM loads from the rivers and specific point or line sources representing erosion of cliffs (e.g. off East Anglia)
and the Flemish Banks. The model solution for 2003 is based on a multi-annual model experiment using water
motion and wave information from 1996 onward. During the preparation of this experiment the solution,
especially the slowly responding bed composition has been properly equilibrated.

5 Ensemble Kalman Filtering (EnKF)
5.1 Introduction

Hydrodynamic and transport models often contain several sources of uncertainty, which can occur at several
stages during operation of the model. The governing equations may contain inaccuracies due to lack of
knowledge about the complex physical processes and their interaction. Also, simplifications often must be made
to avoid high computation times. These simplifications will increase the model’s uncertainty. Uncertainties can
also occur due to incorrect or incomplete input data of the model, such as boundary conditions, meteorological
data, wave data and bathymetry. To reduce those uncertainties in the model output and improve its predictions,
data assimilation techniques such as Kalman filter techniques can be applied. Those techniques combine the
model forecast with recent measurement data, using the information on the uncertainties in the model and the
measurements to give a better estimate of the model output. The Ensemble Kalman filter algorithm is here
summarized as follows:

The sediment transport model propagates the system space state vector, SPM, in time. At initial time, ty, an
ensemble of size N is generated on the state vector. The ensemble is generated with a mean representing the
initial condition of the state vector and with a covariance matrix that represents the uncertainty in the estimate of
the initial condition. At every time step, t, each ensemble member, i, with its state vector forced by model errors
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is propagated in time through the model. The model errors are randomly drawn from a predefined distribution
with zero mean and a covariance matrix, Q. This covariance matrix represents the structure of the uncertainties
in the model (also addressed as model errors). The estimate of the time update of the state vector can be
calculated, at any time step, through the mean of the ensemble. The error covariance matrix in the estimate of the
time update of the state vector, Py, is calculated from the statistics of the ensemble. Moreover, random
perturbations are added to the measurements. An ensemble of size N of possible observations is generated on the
actual observations, using measurement errors. The measurement errors are also randomly generated from a
predefined distribution with zero mean and covariance matrix, Ry, representing the uncertainties in the
measurements or measurement errors. The Kalman gain matrix that acts as a weighting factor is then calculated
using the measurement operator that maps the state vector to measurement domain. Finally, the state vector for
every ensemble is then updated using the information on the uncertainties assumed. The full EnKF formulation
is to be found in (Evensen 2003). The advantage of the ensemble Kalman filter is the feasibility of fast
implementation in complex and high non-linear models. In this paper, the EnKF is applied to assimilate SPM
Remote Sensing data in Delft3D-WAQ sediment transport model, where the uncertainties in both the model and
observations and model are used to sequentially update the model.

5.2 Spatial Mapping

In order to assimilate the data into the model, spatial mapping has to be done to be enable consistent comparison
of two different domains (i.e. measured domain and modeled domain). Within the data assimilation technique, it
is the model state that is normally mapped to the data. However, in the present application that would involve
too many linear interpolations between the grid centers and the measured SPM at pixel level. This will introduce
far too much complication in the data assimilation scheme. This might also lead to redundancy in the
information, since two adjacent pixels most likely contain the same information. To avoid these complications,
the data of the MERIS was mapped to model grid. There are several choices of mapping. The use of the error
information in the averaging is most likely to be the best choice. For simplicity, a regular spatial averaging
procedure was used as a first choice for the first tests of assimilation as here presented.
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Figure 13 Gridded SPM product from MERIS data and the standard deviation of the gridded SPM on the 17" December 2003 used in the
assimilation. Only the area of interest is shown in the figure.

In Figure 12 and 13, the difference between SPM product MERIS data (raw) and gridded data can be seen. From
comparing the SPM shown in the figures, it is clear that all contained information in the pixel data is actually
present in the gridded data. However, meanders and eddies resolved in the original, reduced resolution MERIS
data are lost upon girding. This indicates that a reasonable aggregation level has been achieved even with a
simple spatial averaging procedure. However, when very few pixels are present within a grid cell of the model,
some unrealistic results of SPM can be interpreted. By comparing the SPM product MERIS raw data (left panel
of Figure ) to the SPM gridded data (left panel of Figure ) some unrealistic data coverage are present in the cloudy
areas. This is due to the presence of one or two pixels in the grid cell. To avoid such artifacts, more sophisticated
averaging including the number of pixels present in the cell, the error information and spatial interpolation would
be recommended.

6 Assimilation Results

First results of the assimilation of MERIS-derived SPM into Delft3D-WAQ are encouraging. Updating of the
model solution (state) has been carried out successfully. The SPM concentrations and error information have
been gridded onto the computational grid of Delft3D WAQ. Consequently, an appropriate spatial aggregation
level has been obtained, as it is not feasible and even undesirable to attempt to capture all individual small-scale
structures due to eddies and meanders. Since remote sensing data are available nominally once (max twice) per
day, the forward model integration between the updates provides a temporal and spatial interpolation on the
appropriate scales.

A key aspect in the application of data assimilation is the use of known or assumed uncertainties or errors in both
measurements and process model. The uncertainties in the measurements are provided as a measure of the
retrieved value (i.e. standard deviation). The structure of the uncertainties in the model and typical correlation
scales however is indirectly assumed based on the experience with the model itself during the calibration and
validation of the model setup. For the water quality model (Delft3D-WAQ), the uncertainties are assigned only
to the water column suspended particulate matter (i.e. independent variables in the filtering sense). The bed
sediment load was considered to be a “certain” source and/or sink. At present, all other variables such as
hydrodynamic variables and wave variables are considered to be considerably accurate driving forces for the
sediment transport model and thus are not part of the state vector. It was also assumed that the observed SPM is
equivalent to the modelled SPM within the surface layer of the model.

The experiment is carried out by assimilating the gridded SPM shown in Figure 14 into the model results on the
17" December 2003. An ensemble of only 30 members is used perturbed with the noise generated with the
statistical assumptions made on the model error. It is assumed that the errors in the model are normally
distributed with correlation scales of 100 km. The assimilated field is shown in the rightmost panel of Figure 14.
From the figure it is seen that only slight improvements in the model results are obtained in the coarse resolution
area due to the lack of information in this area. Deterioration has been also encountered in the SPM values in the
open sea, presumably due to the large assumed correlation scales. Noticeable improvements are observed along
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the Dutch coast, the high SPM values are improved to resemble those monitored by MERIS. Though the
improvements in the model prediction appear not remarkably large, the results are very encouraging as a first
preliminary results of the research, since they do point out the steps for future improvements. They also agree
with sound reasonable explanations the results.

For example, having the correlation scales assumed to be 100 km might be considered a too high correlation
scale of errors. The assumptions on the uncertainty structure of the model errors are to be considered as rough
first estimates. Uncertainty analysis should be thoroughly carried out as a follow up. It is expected that this will
enhance the results of the assimilation. Comparison of assimilation results due to different assumptions is also
recommended as a verification step for the assumption on the uncertainties structure.

Gridded SPM Product MERIS Data WAQ SPM No
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Figure 14 Gridded SPM Product of MERIS (left), Delft3D-WAQ predicted SPM without any assimilation (middle) and the SPM Estimate
due to assimilation (right) on the 17th December 2003.

Moreover, the remote sensing data is observed from space and is limited to the surface layer (i.e. within the
visible depth of the instrument) while the numerical model deals with the suspended particulate matter
concentration within the upper sigma layers of variable depth. The water quality model also has a physical
visible depth based on the concentration predicted. To be able to compare and/or to assimilate the observed SPM
concentration into the model, one has to calculate and use the equivalent depths. In this experiment, this was not
taken into consideration, only the first sigma layer of the model is assumed to be the optical depth observed. In
other word, it is thus assumed that the SPM concentration observed by the instrument is equivalent to the
predicted SPM concentration by the numerical model in the surface layer of the model. This can create
horizontally inconsistent mismatch between the observation SPM mass within the visible depth and that of the
model within the corresponding depth. Optical depth information needs to be incorporated in the assimilation to
eliminate and/or decrease this mismatch.

Finally, the results here shown are a one-time assimilation at an individual date. By incorporating more data
every day, the difference between the model SPM prediction and the observed data will decrease resulting in a
better results of the EnKF. In other words, there is no prior information in the ensemble through the propagation
of errors of the model in time at first applications, except the prior on initial conditions. It is expected that the
EnKF results improve by incorporating measurements in time.

It has to be emphasized that the results here are preliminary results and will be improved by taking into
consideration those aspects mentioned such as corresponding observed optical depth to the optical (visible depth)
for the model, other averaging procedure including error information, and the assimilation of data for a period of
time longer than one day.
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7 Conclusions

Remotely sensed near-shore SPM with error products and Kp will be a valuable source for Ensemble Kalman
Filtering because:

o Remotely sensed SPM results validate well with in situ data;
e Many SPM changes can be characterized with RS;
e  Approximated optical depth can be delivered with the water quality parameters and their error product.

In this paper, the deterministic DELFT3D-WAQ sediment transport and water quality model is extended with an
Ensemble Kalman filter (EnKF) technique that enables assimilation of recent observational data of different
nature one of which is the remote sensing data from the MERIS imaging spectrometer. This improves the
forecasting capability of the SPM predicting system. The techniques are demonstrated for SPM prediction in the
southern North sea. From the first results, it is concluded that the assimilation of MERIS-derived SPM into a
sediment transport model is technically feasible. It improves the prediction of the concentration distribution.
Many new aspects related to the assimilation of SPM remote sensing data in numerical models such as the
spatial mapping, the uncertainty definition, the definition of the optical depth, is identified during this research.
Those issues have to be included as improvements in the present system.

The use of satellite optical depth information should be included in the assimilation scheme to eliminate any
possible inconsistency between the observation SPM mass within the visible depth and that of the model within
the corresponding depth. Moreover, applying physical constraints on the updated vertical distribution of
suspended particulate matter (SPM concentrations) can be investigated. To be able to assimilate the remote
sensing data into a numerical model, a special type of aggregation or spatial mapping is required. Mapping of the
remote sensing data to model grid and vice versa to include error information and spatial interpolation is
recommended. Finally, since the assumption on the uncertainty structure of the model errors used here are rough
first estimates, more thorough uncertainty analysis should be carried out as a follow up. This would enhance the
results of the assimilation. Comparison of assimilation results due to different assumptions is also recommended
as a verification step for the assumption on the uncertainties structure.

From the experiments discussed here, we conclude that assimilation of MERIS derived SPM into a sediment
transport model is technically feasible. Thanks to the additional error information on the remote sensing data, the
EnKF can be successfully applied. The procedure seems suited to reach a solution that is consistent not only with
the model equations, but also with general notions of the coastal system. Using a 3D transport model enables the
interpolation in horizontal (underneath clouds) and time (between overpasses) as well as extrapolation over the
vertical into the unobserved subsurface.

Applying this type of data assimilation for an entire year or even multiple years will extend the description of the
coastal system in a physically consistent way suitable for baseline determination. Nevertheless, there are
uncertainties and challenges to be dealt with: remote sensing is limited to the surface layer, whereas the bulk of
the sediment is often found near the bed. This source of uncertainty will be attempted to be minimized by
applying additional information on the optical depth and as such control an extended part of the model solution.
This will eliminate any possible mismatch between the observed and modeled SPM mass within the visible
depth interval.

A final step is objective quantitative assessment of the improvements obtained by application of the data
assimilation. For this, we plan to adopt the method presented by Taylor (2001) who devised an objective
measure for model skill depending on standard deviations of model and validation data, model-data correlation
coefficient and the maximum potentially achievable correlation given the stochastic nature of the solution. Since
the spatio-temporal scales of SPM in the coastal zone vary widely and stochastic patterns may be found that can
only partly be resolved by the numerical models, a limit is to be expected as to what goodness of fit is achievable
at all. In order to fully assess the value of the data-assimilation as described above, a follow-up study is
recommended in which the 2007 conditions are to be simulated and validated against field data recently and
currently collected by the Port of Rotterdam.
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